On Virtual Tide Gauge (VTG)

Zhigang Xu Maurice Lamontagne Institute

A VTG Is Not An RTG

RTG (Real Tide Gauge)

50K to build a new RTG and 5k annually maintenance

VTG (Virtual Tide Gauge)

- A VTG does not resides in oceans, it is in a computer on internet.
- It is a good supplement or backup to RTG.

What is a Virtual Tidal Gauge (VTG)?

• A VTG is a mathematical transfer function to transfer astronomical and atmospheric global forcing fields to a time series of water level responses at a point of interest (POI);

• Its parameters are trained by observed data.

Two Forcing Fields

Atmospheric Forcing Field F_{atm} Astronomic Forcing Field

$$\eta = \mathbf{G} * (\mathbf{F}_{atm} + \mathbf{F}_{tide})$$
$$\eta = \mathbf{Cs}$$

All Source Green's Function (ASGF, G Xu 2007); An MISO system.

Regression Model (Xu, 2015a,b) **Regression Parameters**

S

Tidal Forcing

What's its definition?

$$\mathbf{B}_{\mathbf{i}}(\mathbf{E}) = \mu \frac{M_i \cdot 1}{R_i^2} \left(\frac{\overline{R_i}}{R_i} \right), \quad \mathbf{B}_{\mathbf{i}}(\mathbf{X}) = \mu \frac{M_i \cdot 1}{\rho_i^2} \left(\frac{\overline{\rho_i}}{\rho_i} \right)$$
$$\overline{\rho} = \overline{R} - \overline{a}$$

$$\frac{d^2}{dt^2}\overrightarrow{OE} = \sum_{i=1}^n \mathbf{B}_i(E), \qquad \frac{d^2}{dt^2}\overrightarrow{OX} = \sum_{i=1}^n \mathbf{B}_i(X) + \mathbf{G} + \mathbf{I}$$
$$\frac{d^2}{dt^2}(\overrightarrow{OX} - \overrightarrow{OE}) = \sum_{i=1}^n \left(\mathbf{B}_i(X) - \mathbf{B}_i(E)\right) + \mathbf{g} + \mathbf{F}$$

Tidal Forcing: the difference of gravitational forces on a point of interest and on the center of the earth exerted by astronomical bodies.

$$\frac{d^2}{dt^2}\vec{EX} = \sum_{i=1}^n \mathbf{T}_i(E) + \mathbf{g} + \mathbf{F}$$

2017-06-23, 10:30 to 12:00

Time Rage of JPL ephemerides

• De430.bin=

[1549-12-31 00:00:00 to 2650-01-25 00:00:00]

• De431.bin=

[-13001-08-31 00:00:00 to 17000-01-11 00:00:00]

MERRA and GEM4 Model Solutions as Atmospheric Forcing Field

- 1. MERRA/MEERA2:
 - MODERN-ERA RETROSPECTIVE ANALYSIS FOR RESEARCH AND APPLICATIONS
 - NASA reanalysis using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5).
 - Time Range: January 1, 1979 up to last month
- 2. GEM4 Real-time Forecast Data
 - Download Twice a day. 48 Hours forecast.
 - We archived it from January 1, 2016

A Demo VTG for Sept-Iles

Demo VTG for Sept-Iles running in real-time

2017-06-23, 10:30 to 12:00

Seminar at IML

Pêches et Océans Fisheries and Oceans Canada Canada

Explained Variance: 98.35%

An RTG only records up to now.

Demo VTG for Sept-Iles running in real-time

Confidence Zone

Stats of Misfits

Stats of Misfits

0

-1.5

-1

-0.5

Seminar at IML

0

m

0.5

1.5

1

Demo VTG for Sept-Iles running in real-time

Demo VTG for Sept-Iles running in real-time

2017-06-23, 10:30 to 12:00

2017-06-10 00:00:00 (UTC), GEM4: Mean Sea Level Air Pressure

Pêches et Océans Fisheries and Oceans Canada Canada

Storm Surges at Sept-Iles, 2016/12/23 to 2017/06/20

Pêches et Océans Fisheries and Oceans Canada Canada

Observations at Sept-Iles, 2016/12/23 to 2017/06/20

2017-06-23, 10:30 to 12:00

Seminar at IML

Pêches et Océans Fisheries and Oceans Canada Canada

Observations at Sept-Iles, 2016/12/23 to 2017/06/20

2017-06-23, 10:30 to 12:00

Seminar at IML

Pêches et Océans Fisheries and Oceans Canada Canada

Observations at Sept-Iles, 2016/12/23 to 2017/06/20

2017-06-23, 10:30 to 12:00

Stats of Misfits

0

-1.5

-1

-0.5

Seminar at IML

0

m

0.5

1.5

1

VTG is an Application of ASGF

- ASGF theory (Xu 2007, 2011)
- Application to tsunami problems (Xu 2007, Xu and Song 2013)
- Application to storm surge problems (Xu 2015a,b, Xu et al 2015)
- Application to tide + surge problems, VTG (Xu 2017)

What is an ASGF?

The rows are the domain of dependence.

The columns are Green's functions for δ -forcings placed at different grid points.

All-Source Green's Function (ASGF)

2017-06-23, 10:30 to 12:00

ASGF is also MISO (Xu, 2007, 2011, 2013, 2015a,b)

ASGF: All-Source Green's Function

WERRA: Mean Sea Level Air Pressure at 2010-12-06 20:00:00 (UT

From ASGF to A Regression Model (1)

Xu, 2015a, b Ocean Dynamics

$$\begin{split} \mathbf{G}_{72\times408550} &= \mathbf{U}_{72\times72} \mathbf{S}_{72\times72} \mathbf{V}_{72\times408550}^T \end{split} \tag{9} \\ \mathbf{\eta} &= (\mathbf{U}\mathbf{S}\mathbf{V}^T)^* \mathbf{f} \qquad (10) \\ &= (\mathbf{U}\mathbf{S})^* (\mathbf{V}^T \mathbf{f}) \qquad (11) \\ &= (\mathbf{U}\mathbf{S})^* \mathbf{\psi} \qquad (12) \end{split}$$

An ASGF Regression Model

5 From the ASGF convolution to a regression model

From Eq. (12), we have:

$$\boldsymbol{\eta} = (\mathbf{U}\mathbf{S})^*\boldsymbol{\psi} \tag{14}$$

which we can transform into:

$$\eta = \mathbf{U}^*(\mathbf{S}\boldsymbol{\psi}) \tag{15}$$

using the associative property shown in Eq. (B5) in Appendix 2.B2. The following relationship has been proved in Appendix 3:

$$\mathbf{U}^*(\mathbf{S}\boldsymbol{\psi}) = (\mathbf{U}^*\boldsymbol{\Psi})\mathbf{s} \tag{16}$$

$$\mathbf{C} = \mathbf{U}^* \boldsymbol{\Psi}$$
(18)
$$\mathbf{\eta} = \mathbf{C} \ \mathbf{s} \ + \ \boldsymbol{\varepsilon} \qquad \text{ASGF Regression Model}$$
(19)

Xu, 2015a,b Ocean Dynamics

Data Assimilation (Mode Training)

- Best Fit between the Model and the Observation.
- Never Fails!
- Tides, Surges and Linear Trends are assimilated simultaneously.

Number of Mode Parameters

K>> tic

I=eye(numel(x0));
H=[I; A]; d=[x0;b];
P1=(H'*H)\I;
x1=P1*(H'*d);
y1=A*x1;
toc

Elapsed time: 0.389253 s.

Size of H: 292,632x146 (38 years of hourly data) Why it works so fast and accurately?

- All-Source Green's Function (ASGF)
- ASGF Regression Model

Sea Levels at Sept-Iles: 03-Jan-1979 23:00:00 to 20-Jun-2017 11:00:00

- Best Fit between the Model and the Observation.
- Never Fails!
- Tides, Surges and Linear Trends are assimilated simultaneously.

Recursive Regression using one data every ten days

De-tide Satellite Sea Surface Topography Data

- Harmonic Analyses Method (Doodson, 1921), challenged by large track repeating cycle (9.9156 days, compared to 0.5 or 1 day of tidal periods, and to Nyquuist sampling rate, 0.25 days).
- Local Green's Function Method (Response Method, Munk and Cartwright, 1966), challenged by a single source point (only local forcing).
- All-Source Green's Function Method (ASGF; Xu, 2016)

Development of Tidal Data Analyses

- Darwin (1897), Doodson's harmonic method (1921)
- Munk and Cartwright's Local Green Function Method (1966)
- Xu's Global All-Source Green Function Method (2016, 2017)

Pêches et Océans Fisheries and Oceans Canada Canada

Frequency-based approach Darwin 1897 Doodson 1921

$$V = \sum_{n=1}^{N} A_n \cos(\omega_n t + \phi_n)$$

where

$$N = \begin{cases} \infty, & \text{in theory} \\ 386, & \text{in practice (error, ~mm)} \end{cases}$$

323

Long term

322 Dr. A. T. Doodson. The Harmonic

SCHEDULE 0.

 $\begin{array}{l} G_0 = \frac{1}{2} G \left(1-3 \sin^2 \lambda \right), associated with coefficients of cosines to five decimals. \\ G_0' = 1\cdot11803 \ G \sin \lambda \left(3-5 \, \sin^2 \lambda \right), associated with coefficients of sines to five decimals. \end{array}$

						~			
when	no	geoaetic	coefficient	18	cnierea	Cr ₀	$\imath s$	understood.	۶.

Argument- number.	Coefficie	nt.	Argument- number.	Coefficient.		Argument- number. Coefficient.		nt.	
05 (or 8	Ssa) group.		07 (or	Mf) group.		08 group-contd.			
$\begin{array}{c} 055 & 555 \\ 566 \\ 575 \\ 656 \\ 554 \\ 554 \\ 556 \\ 555 \\ 555 \\ 555 \\ 555 \\ 565 \\ 575 \\ 058 & 554 \\ 059 & 553 \\ \end{array}$	$\begin{array}{c} 50458\\ 23411\\ -6552\\ 64\\ -16\\ 1176\\ -73\\ 30\\ 12\\ 7287\\ -181\\ -40\\ 427\\ 17\end{array}$	G_0 G_0 G_0 G_0 G_0 G_0 G_0 G_0	071.755 072.556 073.545 565 655 074.554 556 074.554 865 075.845 365 365 465 555 555 565 575	$\begin{array}{c} 26\\ 91\\ 98\\ 1370\\ -88\\ 15\\ -17\\ 48\\ 12\\ -36\\ 677\\ -44\\ 76\\ 12\\ 15642\\ 6481\\ 607\\ \end{array}$	G ₀ ' G ₀ '	085 255 455 455 555 565 675 086 454 09 091 555 755 092 556 566	54 2005 1241 117 38 24 -12 -26 group. 20 14 32 32 13	G, G,	
06 (or 3 062 -656 063 -445	68 - 16	66 (or Mm) group. 62 -656 68 -16 -16		076 -554 564 077 -355 365	- 13 - 54 - 14 - 47 - 19		555 565 575 095 355 365 365	478 200 19 396 165	
645 655 665	-113 1578 -103		08	group.		455	11	G,	
064 -456 555 654	-103 51 -44 -10	G** G** G*	081 ·655 082 ·456	42 16		0.X	group.		
065 445 455 545 545 665 665 665 675 066 454 067 455 465	$ \begin{array}{r} -542\\ 8254\\ -535\\ -24\\ 466\\ 73\\ -442\\ -179\\ -47\\ -43\\ -116\\ -58 \end{array} $		656 666 083 445 455 555 655 655 655 675 084 456 486 555	26 11 22 217 -14 13 569 236 21 28 10 -16	6 1 22 7 4 3 6 6 1 8 6 6	0X1 655 0X3 455 465 0X5 255 265 0E 0E 0E 0E 0E 0E	23 116 48 45 19 group. 12 19		

Development of the Tide-generating Potential.

SCHEDULE 1.

 $G_1 = G \sin 2\lambda$, associated with coefficients of sines to five decimals. $G_1' = 0.72618G \cos\lambda (1-5\sin^2\lambda)$, associated with coefficients of cosines to five decimals.

(When no geodetic coefficient is entered G1 is understood.)

Diurnal

Argument- number. Coefficient.		Argument- number. Coofficient.		Argument- number. Coefficient		nt.		
10	group.		13 (or Q ₁) group-contd.			15 (or M1) group.		
105 .955	11	1	135 .435	-28		152.656	-14	
107 755	46	1 1	545	-84	G1'	153 645	-63	
109 .555	28		555	-211	G''	655	-278	
		1	635	42	1 1	154 656	15	
			640	1360		100 430	107	
11	group.		555	-12	ar	455	-1065	
			855	-19	101	545	- 1005	G.
110.000	10	01	136 .456	-13		555	-661	G.
110 755	-10	01	555	-39		565	86	G'
855	108		644	11	1	645	85	- 1
117 .555	-10	G.	654	68		655	-2964	
645	68	- ·	137 .445	258		665	- 594	
655	278		455	1371		675	17	
118.654	21		555	-18	Θ_1	199.922	16	
119 445	10		000	-78		157:445	-18	
455	54		138.444	11		455	- 566	
·			454	64		465	-124	
12	group.		139 .455	-14		158 .454	-24	
		1		100 and				
124 756	13	1	14 (or	O1) group.		10 (01	r к ₁) group.	1
125 645	- 23	G_1'						
655	-58	G1'			Constant of the	101.057	49	0
745	180		143 .535	-17	1	162 -556	1029	G,
100 550	955		745	-20		163 535	14	01
120 000	-10		755	-113		545	-199	
754	15		144 546	-15		555	30	1 1
127 -455	-11	G.'	556	-130		555	17554	G. 1
545	218		190 455	12	en'	557	-11	G ₁
555	1153		545	- 218		755	- 26	0
128 544	14		555	37689		109.004	-147	6
120.255	79		645	16	6.	165 .455	- 36	G. S
120 000	85	1	655	-108	G''	545	1050	
			665	14	6'	655	- 16817	G,
	().) group		755	-243		555	- '36233	· · ·
13 (or	ser) group.		765	- 40		565	-7182	
13 (or			190 544	12		575	154	
13 (or				115		655	13	Gi
13 (or	- 23		147.955			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 423	
13 (or 133 -855 134 -656	-23 -61		147 .355	21	0.1	107 985	100	01
13 (or 133 -855 134 -656	23 61		147 ·355 455 545	-21 -21 14	G',	167 .355	-26	0
13 (or 133 ·855 134 ·656	23 61		147 ·355 455 545 555	-21 -21 14 -491	G',	167 ·355 553 555	-26 -11 -756	G1 G1
13 (or 133 -855 134 -656	23 61		147 ·355 455 545 555 565	-21 -21 14 -491 107	G',	167 ·355 553 555 565	-26 -11 -756 29	$G_1 \\ G_1 \\ G_1$
13 (or 133 ·855 134 ·656	23 61		147 ·855 455 545 555 565 148 ·554	-21 -21 14 -491 107 -33	G',	167 ·355 553 555 565 575	-26 -11 -756 29 14	G_1 G_1 G_1

Semi-, and Ter-Diurnal

			SCHEDULE	2-contra	nuea.			
Argument- number.	Coefficie	nt.	Argument. number.	Coefficie	nt.	Argument- number.	Coefficie	nt.
25 (or	M2) group.		28 (or L ₂)	group-eox	td.	28	group.	
252.756 258.535 755 254.556 655 255.455 535 545 545 655 655 655	$-11 \\ -40 \\ -273 \\ -314 \\ 14 \\ 32 \\ 47 \\ -3386 \\ 90812 \\ 908$	G2'	$\begin{array}{r} 265 & 445 \\ 455 \\ 545 \\ 565 \\ 665 \\ 645 \\ 665 \\ 665 \\ 665 \\ 675 \\ 267 & 455 \end{array}$	$ \begin{array}{r} 95 \\ -2567 \\ -31 \\ 525 \\ 99 \\ -12 \\ 643 \\ 283 \\ 40 \\ 123 \\ \end{array} $	G ₂ ' G ₂ ' G ₂ '	$\begin{array}{r} 283 \cdot 655 \\ 665 \\ 285 \cdot 445 \\ 455 \\ 465 \\ 475 \\ 555 \\ 565 \\ 565 \end{array}$	$123 \\ 54 \\ -12 \\ 643 \\ 280 \\ 30 \\ 48 \\ 31$	G, G,
665 755	16 53	· G ₂ '	465	59	1	29	group.	
765 256 -554 257 -355 455 555 565 565 575	19 276 52 17 107 51 18	G ₂ ′	27 (or 271 -557 272 -556	S2) group. 101 2479	G2 G2	293 *555 565 295 *355 365 555 565	$107 \\ 46 \\ 53 \\ 23 \\ 168 \\ 146$	
26 (oz	26 (or L ₂) group.			·42286 72 - 354 92 29	G2 G2 G2 G2 G2	575	47 group.	
$262 \cdot 656$ $263 \cdot 645$ 655 $264 \cdot 456$ 555	-33 24 -670 -10 17		545 555 565 576 276 554 277 555	7858 3648 3423 379 92 98	G ₂ G ₂ G ₂	2X3 ·455 2X5 ·455 465	17 32 28	
<i>C</i> /	0 32		SCHE	DULE 3	3.		1	
Argument- number.	Coefficie	nt.	Argument- number.	Coefficie	nt.	Argument- number.	Coefficie	nt.
32 group.			34 group.			36 group.		
327 -655	- 17	G ₃ '	345 -645 635 347 -455	$-326 \\ -61$	$\begin{array}{c} G_3'\\G_3'\\G_3'\\G_3'\end{array}$	363 -655 365 -455 655	17 67 25	G, G, G,
33	group.					665	-11	G:
335 755	- 56	G ₃ '		Broup.		37	group.	
000 100	-01	0,	355 ·545 555	66 	G ₃ ' G ₃ '	375 -555	-155	G

Time-domain Approach (Munk and Cartwright, 1966)

Munk

Cartwright

"We decided to take a new look at the tide records, without astronomical prejudice and freely allowing for the presence of noise. Modern methods of time series analysis seemed appropriate.

Nineteen years of hourly tide readings at Honolulu, Hawaii, and Newlyn, England, are analysed without astronomical prejudice as to what frequencies are present, and what are not, thus allowing for background noise."

Explained and Residual Variances

Explained:

Residual:

$$\frac{(\eta - \overline{\eta})'(\eta - \overline{\eta})}{(\eta_{obs} - \overline{\eta_{obs}})'(\eta_{obs} - \overline{\eta_{obs}})} = 0.9507 = 95.07\%$$

$$\frac{\varepsilon'\varepsilon}{(\eta_{obs} - \overline{\eta_{obs}})'(\eta_{obs} - \overline{\eta_{obs}})} = 0.0493 = 4.93\%$$

ASGF+SVD Method

Compared with the harmonic method (t_tide)

Harmonic Method

Decades	residual variance
	total variance
 1970-1980	5.19%
1980-1990	5.35 %
1990-2000	5.22 %
 2000-2011	4.79 %
Mean	5.14%

2017-06-23, 10:30 to 12:00

VTG Work Plan

To establish a network of VTGs to cover three coasts in about 3 years:

- 1) To accompany the network of RTGs that are still operated by CHS.
- 2) To accompany the network of RTGs that have been abandoned by CHS.
- 3) To make good use of short term observations for VTG operations in Arctic.
- 4) To support OPP for additional POIs.
- 5) A VTG web page

Permanent and Temporary Tide Gauges

Locations of Tidal Measurement in Arctic Region (CHS Central & Arctic)

Permanent

Temporary, Bottom Pressure Sensor

Virtual Tide Gauge (VTG) Web Page:

http://142.130.48.193/test/vtg.php

http://odylab.pagekite.me/test/vtg.php

Summary

- 1. A VTG is a cutting-edge technology, integrating
 - a) All-Source Green's Functions and Data Assimilation
 - b) NASA/JPL ephemerides astronomic forcing
 - c) MERRA and GEM4 atmospheric forcing
 - d) Real-Time Tide Gauge Data Streams
 - e) Research and application come together tightly
- 2. A VTG is a good substitute or backup to an RTG, and costs much less!
- 3. A VTG provides good quality of hindcast and forecast. Uncertainty of predictions is reduced by 50% compared with traditional tidal harmonic forecasts.
- 4. A VTG webpage is being developed to distribute forecasts and hindcasts (requiring a public IP address!)

Thanks

- Thanks for Denis Lefaivre for sharing my research interest all the time.
- Thanks for Michel Beaulieu for his assistantship.
- Thanks for local CHS staff being interested in VTGs.
- Thanks all for your attending!